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Crop type Maps for Operational 
Global agricultural Monitoring
Inbal Becker-Reshef  1,2,3 ✉, Brian Barker  1 ✉, Alyssa Whitcraft1,2, Patricia Oliva4,5, 
Kara Mobley1, Christina Justice1 & Ritvik Sahajpal1

Crop type maps identify the spatial distribution of crop types and underpin a large range of agricultural 
monitoring applications ranging from early warning of crop shortfalls, crop condition assessments, 
production forecasts, and damage assessment from extreme weather, to agricultural statistics, 
agricultural insurance, and climate mitigation and adaptation decisions. Despite their importance, 
harmonized, up-to-date global crop type maps of the main food commodities do not exist to date. To 
address this critical data gap of global-scale consistent, up-to-date crop type maps, we harmonized 24 
national and regional datasets from 21 sources covering 66 countries to develop a set of Best Available 
Crop Specific masks (BACS) over the major production and export countries for wheat, maize, rice, and 
soybeans, in the context of the G20 Global Agriculture Monitoring Program, GEOGLAM.

Background & Summary
Ensuring food security is one of the major challenges we face in this century, especially in the face of a changing 
climate and a growing global population. With a rapidly growing demand for food, increasing conflicts, a highly 
interconnected global market, and increasingly extreme weather events, timely and accurate projections and 
estimates of global crop production are more important than ever1. Such estimates are a key component for 
well-functioning agricultural commodity markets and early warning and mitigation systems. One of the key 
international activities in support of transparent agricultural markets is the Group on Earth Observations Global 
Agriculture Monitoring (GEOGLAM) Crop Monitor for the G20 Agricultural Market Information System 
(AMIS) which provides a public good of open, timely, science-driven information on global crop conditions2.  
The AMIS and GEOGLAM initiatives were launched by the G20 Ministers of Agriculture following the food 
price crises in 2007/08 and 20103. While the GEOGLAM initiative is focused on enhancing crop monitoring 
capabilities, in support of policies, investments, and decisions in food security and agricultural markets using 
satellite and in situ Earth observations (EO), AMIS provides an inter-agency platform of economists and 
policymakers who work together to enhance food market transparency and policy response for food security. 
Bringing together the principal trading countries of agricultural commodities, AMIS assesses global food 
supplies (focusing on wheat, maize, rice, and soybeans) and provides a platform to coordinate policy action in 
times of market uncertainty.

In support of these activities, AMIS requested that GEOGLAM develop monthly crop condition assessments 
likely to impact production for these four main commodity crops. Foundational in providing such information 
is the identification of where each crop of interest is growing. Together with crop calendars, crop type maps 
enable the extraction of crop specific signals from satellite data during the agricultural growing season that can 
track crop development through the season and forecast yields ahead of harvest4,5. Despite their high value for 
trade and food security assessments, within-season maps at a sufficiently granular resolution to enable field to 
global-scale analyses of crop condition and crop yield do not exist across all of the world’s agricultural areas6,7. 
While for years this dearth was owing at least in part to insufficient satellite data and limits on computational 
processing8,9, today the principal challenges are the lack of high-quality ground reference data for calibration 
and validation of crop classifications10,11. Nevertheless, a range of crop type map products derived from satellite 
imagery does exist at national and regional scales (e.g.12,13). In addition, at the global scale, there are products 
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such as the IFPRI SPAM-201014, M3-Crops15, and MIRCA200016 that provide information on crop type dis-
tribution based on sub-national statistics and a spatial allocation model at the 10Km resolution. While these 
represent the current state of the art for global crop type distribution, they are based on spatial models and sub-
national statistics rather than the spectral signal of a crop and they are at a very coarse resolution (10 km) and 
are out of date (i.e. represent croplands circa 2010). In short, they may represent the national or subnational total 
land area of each crop, though the spatial location of crops may not be correct, which presents a critical issue for 
their application in masking for within-season crop monitoring.

To meet the needs of the GEOGLAM Crop Monitor to accurately mask crop type with as up-to-date infor-
mation as available, we developed a harmonized global set of crop specific maps for the four major grains (wheat, 
maize, rice, and soybeans) following an exhaustive identification and collection of the most recent, highest quality 
existing crop type maps at national and regional sources. Similar to the efforts by Fritz et al.17 and Waldner et al.18  
that created a unified general cropland product based on existing cropland products, we designed a criteria sys-
tem to assess the best data sets with regards to timeliness, accuracy, spatial resolution, and data source. The result 
is the first set of global crop type maps, at the 0.05 degree resolution, derived from satellite imagery, covering the 
major producer and export countries for the four main crops, referred to herein as the GEOGLAM Global Best 
Available Crop Specific Masks (GEOGLAM-BACS). These maps are used operationally within the GEOGLAM 
Crop Monitor in the creation of monthly global crop condition assessments and are updated on an annual 
basis as new crop type maps become available. The dataset is made publicly available with this publication on 
CropMonitor.org as well as on Zenodo and at the time of submission refers to version v.1.0.

Methods
Several steps were required for developing the GEOGLAM-BACS. These included the following, which are 
further detailed below:

•	 Dataset collection and selection of a base layer
•	 Criteria evaluation and scoring
•	 Product selection based on scores
•	 Generation of a unified map (updated as new data become available)

Data set selection. The Group on Earth Observation Global Agriculture Monitoring (GEOGLAM) required 
global crop-specific masks to provide accurate crop assessments for the primary crops (maize, wheat, soybean, 
and rice) that AMIS (Agricultural Market Information System) is focused on. In response to this requirement and 
acknowledging the need to ensure the spatial fidelity of crop locations while building upon years of community 
product development, we undertook a study of existing global, regional, and national crop-specific map prod-
ucts through exchanges with the various national and regional focal points that contribute to the Crop Monitor 
for AMIS2, the GEOGLAM expert networks, and literature reviews. Three gridded products based on different 
spatial allocation models and subnational statistics were identified at the global scale (SPAM, MIRCA, and M3), 
but the Spatial Allocation Production Model 2010 (SPAM-2010 physical area layer was selected as the foundation 
because it provides a gridded product containing the physical area of the GEOGLAM target crops at a spatial 
resolution of 10 × 10 km19,20. However, the SPAM-2010 physical area crop mask refers to data from 2010 or there-
about, rendering it out of date. Further, it is based on a statistical allocation model that evenly distributes the crop 
physical area density across croplands based upon the administrative level for which the statistics were obtained, 
and therefore can result in inaccurate locations of crops. Given the vital importance of accurate cropping loca-
tions, solely relying upon SPAM-2010 to mask current croplands is insufficient for remote sensing-based analyses.

Due to these features coupled with the ongoing mandate of the GEOGLAM Crop Monitor to report on 
current-season crop conditions, we needed to derive an updated product based on an updateable method for 
generating timely and accurate maps of major crops. The crop masks incorporated into GEOGLAM-BACS 
masks were either produced by GEOGLAM partners from moderate-resolution (10–250 meter) satellite data or 
generated by Agricultural Ministries or Councils of some countries (Table 8, Fig. 1). They therefore, represent 
the most up-to-date crop masks available at the time of submission. Additionally, the GEOGLAM-BACS masks 
used national crop production information and expert knowledge to refine the crop area of some countries, 
bringing high-value expert input from many corners of the globe into a unified product. The top five global pro-
ducers of each commodity (Table 1) were prioritized as those countries account for between 82–97% of global 
crop production. The GEOGLAM-BACS integrates 16 out of the 20 crop-type masks for these top producers.

Several criteria were used to determine a product’s fitness for inclusion within GEOGLAM-BACS and are 
described below. In countries where no specific crop type maps were available, the SPAM 2010 data remains.

Selection criteria and scoring. Similar to the approach described by Waldner et al.21, five criteria were 
considered to guide the selection and evaluation of the crop specific maps. These consisted of seasonal specificity 
(SS), timeliness (Ti), spatial resolution (SR), accuracy (Ac), and data source (DS) (Tables 2–6). Each criterion has 
a range of scores with 4 or 3 as the highest score (depending on the criterion) and 1 as the lowest.

Seasonal specificity criteria. A key element for in-season crop assessments and yield forecasting is accounting 
for multiple growing seasons. As such, a requirement for the GEOGLAM-BACS was to account separately for 
winter wheat and spring wheat, for the first and second maize seasons, for the first and second soybean seasons, 
and for multiple rice growing seasons (up to three seasons). The Seasonal Specificity (SS) Criteria was designed 
to capture this information, where a score of 3 indicates all seasons captured, a score of 2 indicates that one of the 
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Crop Mask Sources
Argentina National Map of Crops / UMD-NASA Wheat Mapping

Belgium Agricultural Use Plots

Canada AAFC Annual Crop Inventory

Conab Summer Crops / UMD GLAD Soy Mapping

Coverage & Land Use of Uruguay / UMD GLAD Soybean Mapping

Crop Map of England (CROME)

Denmark Field and Blocks

EU Crop Map 2018

France Registre Parcellaire Graphique (RPG)

INVEKOS Schläge Austria

IRRI Rice Mask

IRRI Rice Mask / UMD GLAD Wheat Mapping

IRRI Rice Mask / UMD-NASA Wheat Mapping

Lativa Field Block WFS Service

Mexico SIAP Crop Masks

Netherlands Basic Registration of Crop Parcels

South Africa Maize Growing Areas

SPAM 2010

UMD GLAD Soybean Mapping

UMD-NASA Wheat Mapping

USA Crop Data Layer (CDL)

Fig. 1 Individual products used per country to assemble the final GEOGLAM Best Available Crop Masks.

Wheat Maize Rice Soybean

China United States China Brazil

European Union China India United States

India Brazil Indonesia Argentina

Russia European Union Bangladesh China

United States Argentina Vietnam India

Table 1. Top five producers for each crop using the 5-year mean production value from 2017–2021 according 
to statistics from USDA PSD Online (accessed 10/20/2022). Countries in italics indicate where updated crop-
specific national masks were not publicly accessible. 

Rules for seasonal specificity criteria

Criteria Score

All seasons are represented as unique layers 3

One of the multiple seasons represented 2

Multiple seasons aggregated 1

Table 2. Rules for the seasonal specificity criteria, where the highest score of 3 indicates all seasons captured 
while the lowest score of 1 means all seasons are aggregated into 1 mapped layer.

Rules for timeliness

Criteria Score

Current Season (In-Season) 4

Post Harvest/End of Season (within 1 year) 3

Recent (within 1 to 3 years) 2

Out-of-date (older than 3 years) 1

Table 3. Rules for the timeliness criteria, where the highest score of 4 indicates an in-season product and the 
lowest score of 1 indicates a crop map older than 3 years.
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multiple seasons is captured, and a score of 1 means all seasons are aggregated into 1 mapped layer (i.e. winter 
wheat and spring wheat are not captured separately, but rather are aggregated into one class of wheat) (Table 2).

Timeliness (Ti) criterion. In most growing regions of the world, croplands are dynamic with changes in plant-
ing occurring from one season to the next due to crop rotation, weather, agricultural markets, and policies. 
As such, a within-season crop-specific map at field scale would be ideal6,22–25. While there is a large push from 
the community to produce such products at scale (i.e.10,11), to date, such products are not widely available. 
Nevertheless, broadly speaking a recent season is generally more likely to represent crop specific extent relative 
to older products, especially at coarse resolution per pixel percent crop type maps such as the BACS product22. 
As such, the timeliness criterion is designed to give the highest score (4) to within-season products and the low-
est score (1) to the out-of-date products defined as older than 5 years (Table 3). It is worth noting here that none 
of the crop products in BACS had a score of 4.

Spatial resolution criterion. A range of studies have characterized in detail the spatial resolution requirements for 
accurately mapping crop types, which account not only for field size but also account for field shapes, crop diver-
sity, and overall landscape complexity26–28. However, for the GEOGLAM-BACS products, we took a simplified 
approach and considered that the higher spatial resolution products would generally be able to characterize crop 
types better than the coarser resolution products. While we acknowledge that higher spatial resolution does not 
always translate to higher accuracy, they do often perform better when produced with local training and valida-
tion datasets which is the case for the higher-resolution products integrated into the GEOGLAM-BACS dataset.

As such, the higher-resolution products (5–20 m) received the highest score (4) and the lowest-resolution 
products (>500 m) received the lowest score (1) (Table 4). The four resolution classes were defined based on 
spatial resolution requirements as articulated by the GEOGLAM community and defined in9.

Accuracy criterion. The accuracy criterion scoring was based on the accuracy metrics available for each of the 
crop type products (Table 5). Where not available, scoring is based on an assessment against sub-national level 
published statistics. This criterion was based on four categories, with the above 90% reported overall accuracy 
score receiving a score of 4 and overall accuracy of less than 80% received a score of 2. Several of the products 
did not report accuracy at all, or did not report accuracy for a specific crop type or country, and therefore where 
possible we approximated the accuracy of these products based on a comparison with subnational-level official 
statistics. We recognize the issues with this approach, but given that we did not have any other data on their 
accuracy this was an acceptable approximation for this purpose. Where the accuracy of these products could not 
be discerned for these purposes, they received the lowest score (1).

Data source criterion. This criterion aims to capture the relative specificity of the products for the countries 
they cover. Generally speaking, products that are developed at a sub-national to national scale are based on 
models and ground data collected for that specific country and are specialized for that country. At the regional 
level, the mapped products and models are usually more generalized to map larger regions, and generally speak-
ing have less national-specific data, and lower accuracies at the national scale. Likewise, products that are at the 
global scale, often rely on generalizations developed in locations with ground data and often extrapolate to map 
regions with little or no ground data. While great progress is being made in developing robust and scalable mod-
els utilizing sparse ground data sets10,11,29–32 still, for the most part, the sub-national and national-level products 
tend to have higher accuracies than do regional and global data. As such in this criterion, the national products 
received the highest score (3) and the global products received the lowest score (1) (Table 6).

Rules for spatial resolution

Criteria Score

High (5–20 meter) 4

Moderate (20–100 meter) 3

Coarse (100–500 meter) 2

Very Coarse (>500 meter) 1

Table 4. Rules for the spatial resolution criteria, where the highest score of 4 indicates a high-resolution 
product of 5–20 meters, while a score of 1 indicates a very course resolution product of >500 meters.

Rules for accuracy

Criteria Score

High (>90% overall accuracy) 4

Good (80–90% overall accuracy) 3

Low (<80% overall accuracy) 2

Not Reported 1

Table 5. Rules for the accuracy criteria, where the highest score of 4 indicates a high accuracy of >90% overall, 
while a score of 1 indicates that the accuracy of the product is not reported.
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Scoring & product selection. The scores for each criterion were then aggregated to compute the fitness indi-
cator (FI) as follows:

FI SS Ti SR Ac DS= + + + +

Where FI is the Fitness Indicator, SS is the seasonal specificity score, Ti is the timeliness score, SR is the spa-
tial resolution score and Ac is the accuracy score, and DS is the data source score (Table 7).

Rules for data source

Criteria Score

National 3

Regional 2

Global 1

Table 6. Rules for the data source criteria, where the highest score of 3 indicates a national-level product, while 
a score of 1 indicates a global-level product.

Country/Region of 
Coverage Product

Seasonal 
Specificity Timeliness

Spatial 
Resolution Accuracy

Data 
Source TOTAL

Argentina National Map of Crops 
2018/2019 Campaign 1 3 4 3 3 14

Argentina UMD/NASA Winter Wheat 
Mapping 3 1 2 4 3 13

Asia IRRI Rice Mask 1 1 2 3 2 9

Australia UMD/NASA Winter Wheat 
Mapping 3 1 2 4 3 13

Austria INVEKOS Schläge Austria 2019 3 2 4 4 3 16

Belgium
Agricultural use plots ALV 2016, 
Anonymous Agricultural Plot 
(2018) (PAA)

3 1 4 4 3 15

Brazil UMD GLAD Brazil Soybeans 3 1 3 3 3 13

Brazil Conab Crop Areas 3 2 3 3 3 14

Canada AAFC Canada Annual Crop 
Inventory 3 3 4 3 3 16

Denmark Fields and Blocks 3 2 4 1 3 13

England Crop Map of England (CROME) 
2019 3 2 3 1 3 12

European Union EU Crop Map 2018 3 2 4 3 2 14

France France Registre Parcellaire 
Graphique (RPG) 3 2 4 4 3 16

Global SPAM 2010 1 1 1 1 1 5

India UMD/NASA Winter Wheat 
Mapping 3 1 2 4 3 13

Kazakhstan UMD/NASA Spring Wheat 
Mapping 3 1 2 4 3 13

Latvia Field Block WFS service 3 2 4 1 3 13

Mexico Mexico SIAP Crop Mask 3 1 4 2 3 13

Netherlands Basic Registration of Crop Parcels 
(BRP) 2019 3 2 4 4 3 16

Pakistan UMD GLAD Pakistan Winter 
Wheat 3 1 3 3 3 13

Russian Federation UMD/NASA Winter Wheat 
Mapping 2 2 2 4 3 13

South Africa Maize growing areas 3 1 4 4 3 15

Ukraine UMD/NASA Winter Wheat 
Mapping 3 2 2 3 3 13

Uruguay Integrated Map of Coverage/
Land Use of Uruguay 3 1 4 4 3 15

USA USDA NASS CDL 3 3 4 3 3 16

Table 7. Crop Masks product scoring based upon the defined selection criteria. Full references for each 
Country/Region of Coverage associated Product are included with annotation in the References section. 
References for Denmark, Latvia, Mexico, and South Africa are not included as the products are not publicly 
accessible.
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Fig. 2 Cumulative scores and the contribution from each criterion for all of the individual products used to 
assemble the final GEOGLAM Best Available Crop Masks.

Maize Soybean

Winter Wheat Spring Wheat

Rice

Percent Area per Crop
100%

1%

Fig. 3 All five crop masks are shown as a percent per pixel at 0.05 degrees that are covered by an individual 
crop. Areas with a higher percent per pixel of a crop are shown in darker blue while areas with a lower percent 
per pixel are shown in light yellow.
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Overview of scores. The highest score possible accounting for the highest rank in each category is 18. While 
none of the products received this score (as none are in-season products at 10-meter resolution), several prod-
ucts received high scores, with eleven products scoring between 16 and 14, twelve products scoring between 13 
and 11, one scoring 9, and one scoring 5 (the initial base map) (Fig. 2). This highlights one of the most pressing 
current gaps in crop specific maps, which is a lack of in-season crop type masks that are especially crucial for 
tracking specific crop development, input deficiencies, yield forecasting, planted area, etc. during the growing 
season itself. While many of the products were recent (within the past 1 to 3 years), a large portion of the major 
staple crop-producing regions of the world do not have publicly available recent crop type maps, notable coun-
tries are India and China, two of the world’s largest crop producers and consumers. An area of low scores is for SS 
in countries where there is more than one season per year for the same crop such as summer vs. spring-planted 
maize or winter vs. spring wheat. An important example of this is the differentiation between spring wheat and 
winter wheat in Russia or early and late planted soybeans in Argentina.

Generation of unified map. As the collection of national, regional, and global crop-specific masks are at a 
variety of spatial resolutions, all the masks were harmonized to a common resolution. The 0.05-degree resolution 
of the climate modeling grid (CMG) MODIS products was selected for the standardized product. This resolution 
was chosen to match the wide variety of climate datasets available at the CMG level for agricultural monitoring. 
Additionally, it has been shown that when detailed in-season crop masks are not available over areas with crop 
rotations, a coarse resolution mask, such as the 0.05-degree CMG, can be used to accurately monitor and yield 
forecast for specific crops using Normalized Difference Vegetation Index (NDVI) time-series data22.

The crop-specific SPAM 2010 products were converted to percent per crop, per pixel, and then resampled to 
CMG level from the original 10 × 10 km grid. Since winter and spring wheat have different growing calendars 
and require detailed monitoring during different periods, the SPAM-2010 v2 wheat layer was split out into sepa-
rate seasonal masks. In locations where seasonal-specific crop masks could be obtained (Canada, United States, 
Russia winter wheat, and Kazakhstan spring wheat), they were used. For the remaining locations and seasons 
(Russia spring wheat, China winter and spring wheat, and Kazakhstan winter wheat), sub-national sown area 
statistics were used to identify the percent of the SPAM-2010 v2 wheat layer associated with each season. This 
was done by incrementally reducing the percent per pixel value across each sub-national region uniformly until 
the area of the crop mask within the sub-national region matched the reported sown area for that region.

The crop-specific masks used in assembling the GEOGLAM-BACS masks came in a variety of formats and 
spatial resolutions. The steps used to derive the final standardized format and spatial resolution vary depending 
on the source. Generally, each of the designated crops was separated and converted over to a raster grid at its 
native spatial resolution. Then each crop type gridded layer was converted to a binary grid of “1” for the crop 
and “0” for no-crop. Using the CMG grid, each CMG cell was then overlaid on top of the crop-specific raster 
where the number of crop cells was divided by the total number of cells covered by the CMG cell to get the per-
centage of the crop within per pixel. The final product was then assembled by replacing the data from within the 
resampled SPAM-2010 product where the national and regional products were found to be available (Figs. 3, 4).

Data Records
The GEOGLAM-BACS masks are a collection of five global Geotiff files containing flat rasters at 0.05 degrees, 
one for each of the AMIS crops (Maize, Soybean, Rice, Winter Wheat, and Spring Wheat). A comprehensive 
metadata file accompanies the rasters. Values represent the percent of the specific crop per pixel, ranging from 
0 to 100%. Within the rasters, values were converted to integers whereby the values are from 0 to 10,000, where 
10,000 is equal to 100.00%. This was done to preserve small variations across the landscape of less than 1% while 
reducing the size of the dataset. The GEOGLAM-BACS will be updated regularly as new and more recent prod-
ucts become available. The updated rasters and metadata files will be pushed to the Zenodo repository as well as 
hosted on www.CropMonitor.org.

GEOGLAM BACS Maize Physical Area

Percent Area Maize
100%

1%

Percent Area Maize
100%
 
1%

SPAM-2010 Maize Physical Area

Fig. 4 SPAM 2010 v2.0 physical area for maize in Argentina at CMG level (left) compared to the physical area 
for maize from the Argentina National Map of Crops 2018/2019 campaign at CMG level (right).
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For those countries and regions that have had the original SPAM 2010 v2 data replaced, Table 8 identifies the 
specific products used. The data is accessible on the Zenodo platform33: https://zenodo.org/record/7230863#.
Y1F3mnZKh9M.

technical Validation
The majority of the crop specific masks used in the creation of the GEOGLAM-BACS have associated vali-
dation and accuracy metrics that are publicly available (Table 9). Similar to work done by Pittman et al.34 and 
Pérez-Hoyos et al.35, the crop masks that do not have publicly available validation information were validated 
against reported sub-national sown area statistics for the specific reference year (Table 10). While we recognize 
there are many limitations to such an approach to validation, this was the only feasible way for providing some 
validation of these products. The comparisons against sub-national sown area statistics are provided in Table 10.

Known issues & required improvements. GEOGLAM-BACS, as indicated by its name, represents the 
best-available, most up-to-date globally harmonized dataset on the locations of the four major commodity crops 
wheat, maize, rice, and soybean. Still, there remain gaps as indicated by this technical validation, and enumerated 
briefly below:

Country/Region of 
Coverage Product Crop(s) covered

Native 
Resolution

Season 
Coverage References

Argentina National Map of Crops 2018/2019 
campaign Maize, Soybean 30 meter 2018–2019 41

Argentina UMD/NASA Wheat Mapping Winter Wheat 500 meter 2015 42

Asia IRRI Rice Mask Rice 500 meter 2000–2003 43–46

Australia UMD/NASA Wheat Mapping Winter Wheat 500 meter 2014–2018 
avg

42

Austria INVEKOS Schläge Austria 2019 Maize, Soybean, Winter Wheat, 
Spring Wheat Field Scale 2019 47

Belgium
Agricultural use plots ALV 2016, 
Anonymous agricultural plot (2018) 
(PAA)

Maize, Soybean, Winter Wheat, 
Spring Wheat Field Scale 2018, 2016 48

Brazil Conab summer crop areas Maize, Rice, Winter Wheat Field Scale to 
250 m 2014–2021 49

Argentina, Brazil, 
Bolivia, Chile, 
Paraguay, Uruguay

UMD GLAD Annual Soybeans Soybean 30 meter 2020 50,51

Canada AAFC Canada Annual Crop Inventory Maize, Soybean, Winter Wheat, 
Spring Wheat 30 meter 2019 52

Denmark Fields and Blocks Maize, Winter Wheat, Spring 
Wheat Field Scale 2019 N/A (not publicly 

accessible)

England Crop Map of England (CROME) 2019 Maize, Soybean, Winter Wheat, 
Spring Wheat 64 meter 2019 53

European Union EU Crop Map 2018 Winter wheat, Maize 10 meter 2018 54

France France Registre Parcellaire Graphique 
(RPG)

Maize, Soybean, Rice, Winter 
Wheat, Spring Wheat Field Scale 2018 55

Global SPAM 2010 v2.0 Maize, Soybean, Rice, Wheat 0.083 degrees 2010 56

India UMD/NASA Wheat Mapping Winter Wheat 500 meter 2014 42

Kazakhstan UMD/NASA Wheat Mapping Spring Wheat 500 meter 2015 42

Latvia Field Block WFS service Maize, Soybean, Winter Wheat, 
Spring Wheat Field Scale 2019 N/A (not publicly 

accessible)

Mexico Mexico SIAP crop mask Maize, Winter Wheat, Spring 
Wheat Field Scale 2019 N/A (not publicly 

accessible)

Netherlands Basic Registration of Crop Parcels (BRP) 
2019

Maize, Soybean, Winter Wheat, 
Spring Wheat Field Scale 2019 57

Pakistan UMD GLAD Pakistan Winter Wheat Winter Wheat 250 meter 2014 58

Russian Federation UMD/NASA Wheat Mapping Winter Wheat 500 meter 2019 42

South Africa Maize growing areas Maize Field Scale 2014 N/A (not publicly 
accessible)

Ukraine UMD/NASA Wheat Mapping Winter Wheat 500 meter 2019 42

Uruguay Integrated Map of Coverage/Land Use of 
Uruguay Rice 10 meter 2018 59

USA USDA NASS CDL Maize, Soybean, Rice, Winter 
Wheat, Spring Wheat 30 meter 2019 60,61

Table 8. List of all crop mask products used in the creation of the GEOGLAM Best Available Crop Specific 
Masks (BACS). Shortened references for each Country/Region of Coverage and associated Product are included 
in the “References” column. References for Denmark, Latvia, Mexico, and South Africa are not included as the 
products are not publicly accessible at their native resolution.
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•	 While we have made our best effort to validate GEOGLAM-BACS, in many areas validation data for specific 
locations simply does not exist. All crop monitoring activities, including that of the GEOGLAM Crop Moni-
tor, would be strengthened with quantitative validation that would empower more precise and risk-informed 
decision-making36. Critical to this effort is expanding the collection and availability of ground data for train-
ing and validation. Advances have been made in generating and interpreting labeled datasets to assist in these 
efforts (e.g.31,32,37), and should be further developed, particularly in data-sparse regions which often correlate 
with food insecurity38.

•	 The GEOGLAM-BACS are not currently produced in-season. This is a major priority for monitoring crops 
as they develop throughout the growing season, yield forecasting, producing within-season cropped area 
estimates, damage estimates from extreme weather, conflict, etc. Relying on prior year information is the 
state of the science at global scale22, however with advances in  public and commercial satellite missions, that 
together deliver sub-weekly or even daily observations at 3–30 m (e.g. Landsat 8, Landsat 9, Sentinel1 & 2, 
Planet Doves;9,39, and advances in cloud compute, ML, and digital data collection, within-season crop type 

Country/Region of 
Coverage Product Validation Results References

Asia IRRI Rice Mask

1. South Asia: Accuracies from 67% to 100% for individual rice classes, 
with an overall accuracy of 80% for all classes

43–46

2. Bangladesh: Rice versus non-rice exceeded 90% accuracy in all three 
seasons, and the accuracy of the five rice classes varied from 78% to 90% 
across the three seasons.

3. Nepal: Fuzzy classification accuracies range between 67% and 91% for 
various rice classes, with an accuracy of 82% for field-plot data.

4. South and Southeast Asia: Area estimates of paddy rice were highly 
correlated at the national level and positively correlated at the subnational 
levels, although the agreement at the national level was much stronger.

Argentina, Brazil, 
Bolivia, Chile, 
Paraguay, Uruguay

UMD GLAD South 
America Soybeans Overall soybean map accuracy ranges from 94–96% 50,51

Argentina National Map of Crops 
2018/2019 campaign

For the seven growing seasons considered, overall accuracies were higher 
than 85% and, in most years, higher than 90%.

41

Canada AAFC Canada annual 
Crop inventory

The overall accuracy of Canadian crop inventory maps is 85 percent at the 
national scale but varies based on crop type, region, and year.

52

European Union EU Crop Map 2018
The overall accuracy of the map is 80.3% when grouping main crop classes 
and 76% when considering all 19 crop type classes separately. Individual 
crop accuracies vary.

54

Global SPAM 2010 N/A 56

England Crop Map of England 
(CROME) 2019

The results were checked against survey data collected by field inspectors 
and visually validated.

53

Pakistan UMD GLAD Pakistan 
Winter Wheat

While there wasn’t validation data for the crop type map itself, it was used 
as input for yield forecasts where forecasts for the 2007/2008 to 2012/2013 
growing seasons were within 0.2% and 11.5% of final reported values in 
Punjab Province (most important wheat producing region in Pakistan).

58

USA USDA NASS CDL
The most recent 2019 CDL achieves an 83 percent overall accuracy for all 
crops at the national scale. In general, the accuracy of the large area row 
crops ranges from 80 to 90 percent.

60,61

Table 9. Crop Mask products with validation already. Shortened references for each Country/Region of 
Coverage and associated Product are included in the “References” column. Full references for each Country/
Region of Coverage and associated Product are included with annotation in the References section.

Country Winter Wheat Spring Wheat Maize Soybean Rice

Brazil 0.9977 N/A 0.8275 N/A 0.8834

Mexico 0.85 0.643 0.657 N/A N/A

South Africa N/A N/A 0.9104 N/A N/A

Austria 0.998 * 0.958 0.9543 N/A

Belgium 0.986 * 0.984 ! N/A

Denmark * * * N/A N/A

France 0.944 * 0.9976 ! 1

Netherlands 0.9826 * 0.9913 * N/A

Uruguay N/A N/A N/A N/A 0.9995

Latvia * * * ! N/A

Table 10. Comparison of crop masks that lack published validation information with sub-national sown area 
statistics from the crop mask reference year. R-squared values for each crop per country, each country, and by 
each crop. *Only national level data available for the year in question.   ! No official statistics available. N/A Crop 
was not included in the masks.
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mapping is within sight and has been articulated as a priority for GEOGLAM Essential Agriculture Variables 
(EAVs)25 and the European Space Agency’s WorldCereal project29,40.

•	 In areas of the world where multiple seasons of the same crop exist – for example, maize and rice – in some cases  
seasonal specificity is lacking in the current GEOGLAM-BACS. Complementing crop type mapping with crop 
type calendar information is an important research area(e.g.62, again prioritized by the GEOGLAM EAVs.

•	 There remain areas for which no recent satellite based crop type data exists, and the product relies on SPAM 
2010’s statistical allocation model. It is unclear whether these locations are representative of true crop loca-
tions, and merit prioritization in future satellite-mapping activities.

•	 Of particular importance to human livelihoods is the improvement of information in areas with acute food 
insecurity and/or characterized by smallholder agriculture. This requires fine spatial resolution data, which as 
mentioned is now available between public and private optical and synthetic aperture radar missions, as well 
as appropriate ground data, which is often the primary bottle neck.

As demonstrated by GEOGLAM-BACS, one of the most powerful tools in advancing global agricultural 
monitoring is international collaboration. The GEOGLAM-BACS is a public good that would not be possible 
without the inputs and substasive contributions of GEOGLAM partners around the world.

Usage Notes
The primary use of this dataset is for underpinning EO-based, global, crop-specific condition monitoring for 
four of the major crop commodities in the major production/exporting countries, through the GEOGLAM Crop 
Monitor activity. As noted in the prior section (Technical Validation: Known Issues & Required Improvements), 
there is room for improvement concerning validation, extent, resolution, and seasonal specificity, and these 
limitations should be noted in the application of these data in different monitoring activities. Nevertheless, the 
data are already being operationally used within the GEOGLAM Crop Monitor Reports.

Code availability
No custom code was used to generate or process the GEOGLAM-BACS masks. The software used in the assembly 
of the masks was ArcMap version 10.6.
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